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Summary. 

The large-scale separated eddies set up behind a bluff body at high Reynolds number are considered, for steady 
laminar planar flow. The main eddies are massive and are controlled predominantly by inviscid mechanics, with 
uniform vorticity inside. Analytical and computational solutions of the massive-eddy (vortex-sheet) problem are 
then described. A further possibility studied is that, even with lateral symmetry assumed, there may still be an 
extra degree of nonsymmetry or skewing with respect to the streamwise direction. Small-scale separations, where 
a Benjamin-Ono equation also possibly yielding nonsymmetric solutions can come into play, are discussed 
briefly. 

1. Introduction 

The main concern of this work is the theoretical structure of the large-scale eddies set up 
in high-Reynolds-number flow, past a bluff body or thick airfoil in a uniform freestream. 
In particular, a predominantly inviscid massive-eddy account is discussed. There is 
possible application also to flow past a small step, ramp, thin trailing edge or other 
obstacle producing smaller-scale eddies. 

Depending on the Reynolds number, and with many notable exceptions, such flows in 
practice often go through transition to turbulence, but that poses difficulties that are, 
quite simply, beyond current understanding in any firm theoretical sense. Therefore, we 
turn to an alternative strategy, namely, to try to understand the laminar steady-flow 
version first. This is itself a fundamental problem, for flow past a circular cylinder for 
example (Fornberg [1], Smith [11]), and if it cannot be clarified the hope of understanding 
more complex flows is correspondingly diminished. Once it is clarified, we may then 
consider the nonlinear stability of the laminar separated version, or rather extend the 
theory to an unsteady version, subsequently, and examine the unsteady breakdown of the 
flow. This aspect is pursued by Smith [10], among others. In addition, however, the 
limiting description for steady flow, when the Reynolds number is large, is a very 
important one to have available because of its many applications. These are for example, 
to separated thin-airfoil motions, including hysteresis and stall, which are often observed 
experimentally; to pointing to appropriate computational methods at finite Reynolds 
numbers; to providing comparisons or checks on numerical work; to showing the main 
physical mechanisms which occur, hence yielding deeper understanding; and to providing 
a basis for studies of unsteady flow properties. Moreover, the predictions from the 
limiting theory sometimes hold good in a numerical sense at surprisingly low Reynolds 
numbers. 
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The Reynolds number Re is assumed to be large, below, and non-dimensional 
velocities (u, o), Cartesian coordinates (x, y), and pressure p are used such that the 
freestream velocity is (1, 0), the freestream pressure is zero, and the airfoil chord is 1. The 
fluid is taken to be incompressible in most of what follows. Section 1 describes previous 
and recent numerical and analytical studies of the large-scale separated flow past a bluff 
body, e.g. a circular cylinder. Then in Sections 3 and 4, which are the main body of the 
work, a proposal concerning a massive eddy-scale flow behind the body, for Re >> 1, is 
examined analytically and numerically. The proposal appears to be self-consistent as far 
as it has been taken to date. In addition, the present computations address the side issue 
of the existence of an extra degree, or degrees, of freedom in the main, inviscid, 
massive-eddy/vortex-sheet problem posed. For, even with lateral symmetry in y assumed 
for the main eddy, nonsymmetry may be possible still (if unlikely) with respect to the 
streamwise direction x, i.e. the eddy can be "skewed" in the +x-direction. Further 
discussion is presented in Section 5, including an alternative approach from the viewpoint 
of triple-deck theory, for smaller disturbances; there a Benjamin-Ono or similar equation 
applies and, like its more massive counterparts above, it too may yield nonsymmetric as 
well as symmetric solutions. 

2. Background 

On an inviscid basis alone, there are many possibilities that can be considered, and 
indeed allowed, for the flow past a thick airfoil or bluff body. The following are some of 
the principal ones (see Figure 1). The first is classical attached motion governed mainly 
by the potential-flow or Euler equations. A thin viscous boundary layer and subsequent 
wake are assumed, and if the boundary layer can remain attached, because of smoothed 
leading-edge and trailing-edge conditions for example, or due to properties of a turbulent 
boundary-layer model, then the large-Reynolds-number structure of the flow fits together 
readily and is of a fairly simple hierarchical form, including classical Prandtl boundary- 
layer theory. Second, if only small separations are present, for instance at a symmetric or 
nonsymmetric trailing edge, then again the majority of the flow takes the classical 
hierarchical form, while the small-scale separated motion is described by viscous-inviscid 
interactive theory of the triple-deck kind or similar. This type of flow is discussed more 
later on. Third, suppose the separation is instead of large scale, producing eddies whose 
sizes are comparable with the body size at least. Then one possibility is the Prandtl- 
Batchelor structure with the typical eddy size being taken to be comparable with the body 
dimensions and the vorticity in the main part of the eddy being uniform, this analytically 
from an appeal to viscous forces inside the eddy. A fourth candidate, and likewise a major 
one in the context of large-scale separated motion, is the extended Kirchhoff structure, 
where the flow splits into body-scale and (larger) eddy-scale parts with relatively slow 
flow at constant pressure inside the main eddy. A mixture of essentially the third and 
fourth candidates above turns out to be of most interest subsequently, in Sections 3 and 4, 
but at the moment the central point is that according to inviscid theory all the above 
forms are acceptable and, once discontinuities across vortex sheets are allowed, as seems 
sensible physically, there are infinitely many inviscid "solutions" for large-scale separat- 
ing flows. 

With all this arbitrariness in purely inviscid theory, it is essential to take account of the 
effects of viscosity to decide matters more specifically, certainly when solid surfaces are 
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present. Therefore, we turn first here to the Navier-Stokes equations, taking two dimen- 
sional laminar steady motion as a starting point, and examine what happens as the 
Reynolds number Re increases. Accurate computations, experiments and an asymptotic 
theory of the extended Kirchhoff kind (Fig. 1, and Smith [9], Fornberg [1]) mentioned 
previously appear at first sight to fall encouragingly into line for medium values of Re, in 
the case of symmetric flow past a circular cylinder. The drag coefficient c o for the 
cylinder is quite well predicted by that theory, in comparison with reliable Navier-Stokes 
calculations and with experimental measurements available, for Reynolds numbers as low 
as about 10 and up to about 300: Smith [9]. The theory here (reviewed by Messiter [5] and 
Smith [9]) has the Kirchhoff free-streamline form within the body scale, giving rise to an 
O(1) drag coefficient and a parabolically widening eddy downstream at the onset of the 
larger eddy scale flow. The latter scale has streamwise extent O(Re), to conserve 
momentum in the ultimate wake far beyond, the transverse extent is O(Rel/2), and the 

(m) 

(i.v) 

Figure l(a). Various types of inviscid solutions with small- or large-scale separation present. (i) Attached flow. 
(ii) Small-scale separation present near a trailing edge. (iii) Prandtl-Batchelor model. (iv) Extended Kirchhoff 
method. 
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Figure l(b). Numerical Navier-Stokes results ( . . . .  , Fornberg [1]) for the eddy length l E and eddy width w e 

behind the circular cylinder, including results at higher Re. Extended Kirchhoff theory predicts the solid curves, 
for comparison. 
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Figure 1(c). The suggested massively-separated flow structure for large Re, including the massive eddy-scale flow 
I, II addressed in Sections 3 and 4. 

eddy  shape  is a n  ell ipse to preserve  u n i f o r m  pressure  at  l e ad ing  order.  As  n o t e d  before ,  
the  theory ' s  p red ic t ions  agree qui te  well  wi th  c o m p u t a t i o n s  a n d  exper imen t s ,  a n d  s imi-  
la r ly  in  o ther  f low c o n f i g u r a t i o n s  such as i n t e r n a l  mo t ions .  But  there  is a d r a w b a c k  in  the  
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present context of external flow. The drawback (see Smith [9], [11]) arises from the 
theoretical closure of the eddy, where the free shear layer bounding the eddy is split into 
two parts by inviscid means, one part going forward into the ultimate wake and the other 
returning upstream. To conserve vorticity [V 2q, = function (~b)] the returning part must 
have O(1) reversed velocities and O(1) thickness, with a jet-like profile, and so the 
assumption of relatively slow flow in the eddy, upstream of this, is opened to question, 
the more so as both the jet and the viscous free shear layer have to draw fluid from the 
eddy without there being any corresponding source of fluid available. No satisfactory 
mechanism for completing the account of the entire eddy motion has been found yet and 
indeed at present this extended Kirchhoff theory appears to be incomplete, for external 
flows. 

That brings us to the more recent computations of the Navier-Stokes equations at 
higher Reynolds numbers by Fornberg [1] and, at not quite so high Re values, by Ingham 
[4]. The computations, summarized in Figure 1, show eventually an approximately linear 
increase of both the eddy length and the width, with increasing Re. It should be 
mentioned that of course there are no laminar-flow experiments, as yet anyway, to 
compare with at these larger Reynolds numbers because in practice the flow past the 
cylinder is very unstable then. Nevertheless, the concept of a limiting description for 
Re >> 1 is still a most important one to clarify, not least because of its applications to 
separated airfoil motions, including, e.g., hysteresis and stall, to suggesting appropriate 
numerical methods, its highlighting of the physical mechanisms involved, and as a basis 
for unsteady-flow studies: see Section 5. The asymptotic theory (Smith [8], [11]) to which 
the above calculations point, and which replaces the extended Kirchhoff description, is 
based on a massive eddy size of dimensions O(Re) by O(Re): Figure 1. With such 
dimensions, the induced pressure and velocities inside the eddy are O(1) and so, in 
contrast with the earlier account, the eddy motion now affects the viscous shear layer and 
the viscous return wake substantially, and the earlier-noted contradiction at eddy closure 
and the difficulties concerning entrainment are thereby avoided. 

The properties of the large-scale separated flow structure are described in the following 
two sections. 

3. Large-scale structure and inviscid solutions 

The limiting structure as far as the main eddy is concerned is based on Sadovskii's [7] 
model but supplemented by viscous effects. The major difference from the earlier theory 
is that now the recirculating eddy motion in zone II is supposed to be as strong as the 
external motion in zone I and so it affects the viscous-layer flows III substantially (Smith 
[8], [11]). In the inviscid regions I, II of Figure 1 we have 

V2~=O (inI) ,  V2~ = - ~  ( inlI)  (3.1) 

for the stream function ~/-  Re-l~b in scaled termS, with R e - l ~  being the small negative 
uniform vorticity. At the vortex sheet Y = S ( X ) ,  which is the unknown boundary between 
I, II, 

~/, p are continuous (Y= S ( X )  +) ;  (3.2) 
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and the end conditions, which play a significant role, require 

tangential departures at X = 0, L, (3.3) 

where X, Y are O(Re)-scaled coordinates and Re L is the eddy length. The other 
boundary conditions relevant impose a streamline along the X-axis and the uniform 
stream in the farfield. 

Generally the flow speeds ql, qii on either side of the vortex sheet are unequal. The 
whole inviscid solution then depends on the parameter CH, that is, the pressure at the 
ends X = 0, L of the eddy where qli -") 0 ,  here C I I  = (qi21 - q2 + 1)/2 from BernouUi's 
theorem, and the constant Cii can take values between zero and 1/2. The inviscid 
problem, which is our main concern here, determines the product ~L for a prescribed 
value of CII, but subject to a symmetry assumption as discussed later in this section and 
in Section 4. Let us confine attention for the moment to those solutions of the inviscid 
problem, in (3.1)-(3.3), which are symmetric in X about the eddy-center station X = L / 2 .  

As expected in view of earlier comments, there is still a wide range of solutions 
available, on inviscid grounds. Next, however, the properties of the three viscous layers 
III 1, III2, III 3 in Figure 1 narrow the choice. These layers are all governed by the 
boundary-layer equations. The requirement of periodicity (Smith [8]), i.e. continuity 
around the viscous layers III 1 (the free shear layer or vortex sheet) and III 2 (the return 
wake), which border the eddy, is expected to fix the functional dependence of L and Cll 
on ~, leaving only ~ unknown. Also, a left-over jet with O(1) velocities and thickness is 
sent back from layer III 2 into the body-scale flow (see below), whereas the ultimate wake, 
which is the third viscous layer III 3 downstream, determines the drag coefficient c o as a 
function of ~ by means of the overall momentum balance. At this stage therefore we are 
left with, in effect, one relation short to completely determine the motion. 

The extra relation required comes from consideration of the body-scale motion, 
sketched in Smith [8], [11]. Its main feature is that the eddy motion, turning there, again 
has significant vorticity (now O(1)) but the vorticity is nonuniform, being caused by the 
left-over jet from the larger-scale motion. Apart from that, the body-scale structure is very 
like the Kirchhoff free-streamline form and produces an O(1) drag coefficient cD, as well 
as a parabolic growth of the eddy width downstream. The whole flow structure in fact is 
something of a mixture of the extended Kirchhoff and the Prandtl-Batchelor forms. 

Some more details of the body-scale flow are the following (see also Smith [8], [11])). 
(a) The flow is subjected to a reduced freestream in effect, in that 

u --' (I - 2C11 )I/2, P ---, Cn 

in the farfield, to match with the eddy-scale flow. (b) The main inviscid regions IV, V in 
the last-named reference are governed by conservation of vorticity. Here the vorticity in 
the reversing-flow region V stems from the viscous return-jet profile u(0 + ,  y) of the 
eddy-scale motion in layer 1112 and it sets up a significant eddy flow to be turned forward 
in region V. (c) The separation (near the point C of Figure 3 of Smith [11]) is "smooth" 
and described by triple-deck theory; see also Section 5, and the comparison with 
experiments in Smith [8]. The smoothness requirement plays a part in fixing the 
body-scale solution. (d) Secondary separation is likely in the backward boundary layer 
approaching separation but there is some question as to whether this separation is 
relatively small or not. (e) Because the eddy width grows like x ~/2 downstream, buffer 
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zones are necessary to join certain aspects of the body- and eddy-scale flows. (f) The 
body-scale problem determines c D as a function of ~, since the vorticity in region V 
depends on ~. This provides the final relation necessary to fix CD, ~, L and Cii. Also no 
difficulty occurs now during the eddy closure process, since a backward jet is an 
admissible feature of the present flow structure: see Figure 4 of Smith [11]. 

The first task, then, is to solve the inviscid problem of the massive-eddy motion, the 
second task is to calculate the viscous-layer problems (layers III), and the third task is to 
solve for the body-scale flow. 

Concerning the first task, for which numerical results are described subsequently, and 
which forms the basis of the present study, we note that Sadovskii [7] obtained a few 
solutions near one end of the range (CII near 1/2), while at the other end, for C .  small, 
there is a thin-eddy limit (Smith [11]) which is helpful analytically, as well as having 
application in Section 5 below. For small values of C n, or relatively large vorticity, the 
equation of constant vorticity inside the eddy reduces to ~2~/8Y2 = - ~  since the eddy is 
relatively thin, and so, from integration, the eddy pressure p.(X) and the eddy shape 
S(X) are related by 

P i l ( X )  = C i l -  1~2S2(X) .  (3.4) 

But the external motion past the thin eddy yields the surface pressure, in terms of a 
Cauchy-Hilbert principal value, 

1 
p I ( X ) =  - 7rJo " ( 3 . 5 )  

Hence continuity of pressure leads to the nonlinear integro-differential equation 

_ CII-~ !LSt(~)I" d~ 
,o 

(3.6a) 

for the unknown eddy shape S(X) between X = 0, L subject to the constraints 

S = S ' = 0  at X = 0 ,  L. (3.6b) 

The above is an integrated steady form of the Benjamin-Ono equation. Further analysis 
e.g. using Fourier series may be possible, but computation seems most desirable for later 
purposes. The computations were performed initially by means of a Carter-like approach 
as follows (also see Section 4). A guess is made for S(X), then p,(X), pI(X) are 
calculated from (3.4), (3.5) respectively, and the pressure difference ( p l -  P II) is used as 
the basis for updating S(X), and so on. The updating takes the new S as a linear 
combination of the old S and (Pl--PlI),  a t  each X, in such a way that short-scale wave 
growth is avoided. Also, a normalization including setting L = 2 is applied to avoid the 
trivial solution C.  = S(X)= 0. It is noted here that Sadovskii [7] uses a parameter for 
these flows which is inappropriate as in effect it produces dual solutions, unlike with the 
parameter C n. Solutions of the thin-eddy case (3.6a, b) are shown in Figure 5 of Smith 
[11] with S, ~ denoting normalized variables and with symmetry about the eddy centre. 

When two characteristic properties of the full problem are plotted (last reference, and 
Fig. 2 below), namely the maximum eddy width and a measure of the vorticity, the 
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comparison between the thin-eddy predictions for small C u and Sadovskii's results near 
CII = 1/2 is found to be fairly close. So the thin-eddy theory seems useful in numerical 
terms (see next-but-one paragraph), in addition to giving more analytical backing to the 
whole model and having relevance to the smaller-scale separations discussed in Section 5. 

A possibility noted here is that the thin-eddy or other solutions of the massive-eddy 
problem may open the door to Prandtl-Batchelor solutions. No solutions of the Prandtl- 
Batchelor type for flow past a smooth body have been found yet, as far as we know, even 
on an inviscid basis, let alone allowing for viscous effects. Yet it is possible that a smooth 
thin body can be inserted near the start of the massive eddy without drastically disrupting 
the flow structure. The same conclusion holds if a thin body is placed along the x-axis 
even in the middle of the eddy, certainly in the thin-eddy case. Again, a small Prandtl- 
Batchelor eddy adjoining a smooth airfoil surface is governed by the thin-eddy analysis. 
So continuation would tend to suggest the existence of Prandtl-Batchelor flows having 
eddy sizes comparable with the airfoil dimensions, at least on inviscid grounds. 

Returning to the massive-eddy problem (3.1)-(3.3) for general values of CII, we have 
obtained solutions by a numerical procedure outlined in (A)-(F) below. This is built on 
the thin-eddy method since as noted above that gives a good first estimate numerically for 
the entire range of values of CII. More details of the method are given in Section 4. 
(A) Specify C u and guess S(X), ~L. 

0"2 

0 
0 X i 

Figure 2. Present solutions of (3.1)-(3.3) for (a) the eddy shape ~rid (b) the boundary pressure, versus 
X * =  2 X / L - l ,  for various values of the end-pressure parameter Cn; and (¢) the maximum eddy width 
L-1S(X * = 0) and vorticity fiLl2 as C n varies [0, O present work; × ,  Q, from Sadovskii [7]; - -  - -  - - ,  from 
thin-eddy limit]. These are symmetric solutions. 
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(B) Take the thin-eddy formula (3.5) for PI first and iterate to include full nonlinearity, 
using Cauchy-Hilbert type of integrals throughout. 

(C) Next, take the thin-eddy formula (3.4) for Pn and iterate to include full nonlinearity, 
using an S.O.R. scheme with the coordinate Y/S(X) .  

(D) Update S(X) by a Carter technique, in the form S t") = S ( " - 1 )  Jr r(p I --PlI) at each 
X, where r is a relaxation factor and (n) denotes the level of the sweep. 

(E) Renormalize to update ~L by imposing the conditions (3.3). 
(F) Return to (B), until convergence is achieved. 

The scheme works reasonably well, certainly at lower values of the parameter CH, 
although the convergence at higher values of CII has proved slow so far. Improvements of 
the method and alternatives, e.g., a Veldman-Davis scheme, are considered in Section 4. 

The results obtained are summarized in Figures 2, 3. It should be stressed here that 
generally these are solutions extrapolated from converged results on a number of grids: 
see also above and Figure 4 below. The results in Figure 2, for values of C~I up to 0.45, 
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Figure 3. Samples of the nearly converged nonsymmetric  forms found in the present work. See also a later 
footnote. For the thin-eddy case (3.6), (a) and (b) show the eddy shape and boundary pressure, versus X*,  when 
the nonsymmetry  parameter h I = 0, 0.1, 0.2 [ 2K , O, - -  - -  - -  respectively]. For the massive-eddy problem 
(3.1)-(3.3), with C .  = 0.4, (c) and (d) give the eddy shape and boundary pressure when h I = 0[ ~( ], 0.1 [o], 
0.2 [ . . . .  ]. Note that  these inviscid forms are reversible about X*  = 0: see also the text. 
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approach the earlier ones for the thin-eddy case, as CI~ is decreased, and they are also 
near Sadovskii's [7] results at higher values of CII. The limiting case of CII = 1/2 
(Pierrehumbert [6]) is an interesting one, by the way, partly because it has no discontinu- 
ity in velocity across the bounding vortex sheet, so that the speed driving the body-scale 
flow is reduced by an order of magnitude, probably (but not necessarily) producing an 
asymptotically small drag c o. Further, Fornberg's [1] Navier-Stokes calculations may be 
tending to point towards that limiting case, or near it, as regards the eddy width/length 
ratio: we would refer here also to the comments at the end of the next paragraph. 

The results in Figure 3, however, concern a new feature that was studied in the 
calculations. This is that there might be a host of nonsymmetric solutions of the inviscid 
massive-eddy problem (3.1)-(3.3), in addition to the symmetric ones of Figure 2. Here the 
nonsymmetry refers to "skewing" in the X-direction, i.e. nonsymmetry about X=  L / 2 ;  
symmetry about the wake center-line Y = 0 is preserved throughout. These possibly extra, 
nonsymmetric, solutions in Figure 3 were obtained in exactly the same way numerically as 
the symmetric ones in Figure 2 except that the starting guess for S ( X )  was taken to be 
nonsymmetric and the convergence criterion used previously was relaxed (see also a later 
footnote). A symmetry condition imposed implicitly in the calculations reported in Smith 
[11] was also removed here: see also Section 4. As figure 3 shows, the nearly converged 
nonsymmetric solutions are present both for the thin-eddy problem (3.6a, b) and for the 

i::)I,~ 

0 

- 4  

'0 X* 't 

Fig. 3b. 
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full massive-eddy problem (3.1)-(3.3). Moreover, the above skewed forms alter the 
maximum eddy width and the vorticity a little relative to the symmetric ones and this 
leads to the possibility that the Navier-Stokes calculations of Fornberg [1] are not 
necessarily pointing strongly to the symmetric-eddy limit solution of Pierrehumbert [6] 
but rather perhaps to a nearby nonsymmetric-eddy solution. 

The task of using these inviscid solutions as input for the viscous-layer problems, to 
determine co(n ) and L(~),  has still to be addressed seriously. So has the body-scale 
problem fixing cn, L, ~. The overall picture so far, however, looks reasonably promising, 
we feel, despite the possibihty of an extra degree or degrees of freedom introduced by the 
nonsymmetry found above (see footnote later). 

4. Numerical method 

The numerical method used for solving the massive-eddy problem (3.1)-(3.3) follows the 
plan (A)-(F) outlined near the end of Section 3. Alternative methods for this type of 
vortex-sheet calculation are given in Sadovskii [7] and Pierrehumbert [6], for example. Our 
approach, however, is built on the thin-eddy method in Smith [11] in view of the latter's 

0"4 
o 0"2 

'i 

Fig. 3c. 
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already-good predictions referred to in the previous section. In the present section fuller 
details of each of the steps (A)-(F) are presented. 

Step (A) 

The values specified for the parameter CII were in the range 0.1-0.45. The starting 
guesses for S(X) were of the form 

2 S ( X )  _ CII( 1 _ X.2)3/2(1  _ X , X * ) {  IX* ] ~< 1} 
L 

(4.1) 

with ~1 = 0 for the symmetric solutions but with ?~l taking positive values between 0 and 
0.2 for nonsymmetric cases, while - ~ L / 2  was given a typical guessed value of 1. Here 
we normalize L to be equal to 2, or, equivalently, set (X, Y, S) = L ( X *  + 1, Y*, S*)/2 ,  

= 2~*/L ,  ~ = L ~ * / 2  and solve for the asterisked variables. The asterisk is omitted 
henceforth, for convenience; the shift of the X-origin to the mid-section of the eddy is kept. 

0"2 

\ \ o .11 '1 

0.2 

X ~ 

-0"~ 

f 

~I ~ O. I 

Fig. 3d. 
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Step(B) 

Given the latest S(X) distribution, the aim in this step is to work out first the unknown 
values of the effective slip fi(X, 0)[ = 1 + g(X), say] and upwash ~(X, 0)[ = h(X), say] 
along the axis Y=  0, using complex-variable properties in the outer flow I. Here (fi, ~) is 
the velocity (O~/OY, -a~/OX). Since h(X) is zero for I Xl  > 1, and the complex 
function (fi - 1 - i~) is analytic in z --- x + iY and vanishes at infinity, Cauchy's integral 
formulae give 

1 £1 h(~) d~ 
g ( X )  = ; . t _ l  (--~_~- ~ , (4.2) 

1 1 h ( ~ ) ( X - ~ )  d~ 
fi(X, S ( X ) )  - 1 =  ; , _ f ' I ( X _ ~ ) 2 + S z ( X )  {-  g(X) + R z ( X )  say),  (4.3a) 

~(X, S ( X ) )  S ( X )  1 h ( ~ )  d~ 
= ~ fl_ 1 (X-~)Z+S2(X) {=-h(X)+R3(X)say}" (4.3b) 

The equalities in curly brackets in (4.3) give the definitions of the functions R2, 3. From 
(4.3), the streamline condition in (3.2), i.e. b/fi = S'(X) at Y= S(X), requires 

R,= -R3+S'(g+R2) for IXI <1  (4.4) 

where R 1 is defined by 

h=S'+R 1 for IXl <1 .  (4.5) 

So, with an initial guess [e.g. zero as in the thin-eddy problem] or latest iterate for the 
RI(X)  distribution, (4.5) allows h (X)  to be evaluated; then g(X)  follows from (4.2); then 
(4.3a, b) yield updated R 2,3 (X)  distributions; and new R I(X) values are then implied by 
(4.4). This iteration of (4.2)-(4.5) is repeated a number of times until a convergence 
criterion on the successive iterates is satisfied. 

Once convergence is achieved, the boundary pressure p =PI  at Y = S(X)+ is ob- 
tained as 

p I ( X )  = ½ { 1 - ( 1 +  S'z)(1 + R  2 +g)2} ,  (4.6) 

from use of Bernoulli's law. 
The discretizations adopted for the integral formulae (4.2), (4.3a, b) respectively are, 

with suitable centering aimed at diagonal dominance, 

1 ~1 (i-j)hj 
gi -~" -- (4.7) 



AX ~ ( h j + h j - l ) ( X i - X j - ½ )  

l ~ 2 i = - - ~ i + ' ~ j ~  2 [( Xi _ Xj_ ,a)2 + Si 2 ] 
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(4.8a) 

R3i = - h i + ~ { t a n - l ( 1 - X i ] + t a n - 1 ( l + X i ] l  s , j  s i j j  

+ 
Si A X ( ~  1 ( h i - h i )  

- t h , / [ ( x , -  + si 2] 

- ½ h y [ ( x ,  + s, ] , (4.8b) 

while standard second-order-accurate differencing is applied to the equations (4.4)-(4.6). 
Here a uniform grid-spacing A X in X is taken, the subscript i denotes evaluation at the 
ith station, and i runs from 1 (at X =  - 1 )  to K (at X =  1), so that ( K -  1) A X =  2. Also, 
in (4.8b) an extra h(X) factor is extracted from the integral to increase the accuracy of 
the numerical integration when S(X)  is small. 

Step (0  

To solve numerically for the inviscid eddy flow II, again with S(X)  prescribed, we write 
77 = Y/S(X)  and set ~k = S2(X)~ • Then (3.1) yields the equation 

_ _  = / ,3q' ( 1 +  712S'2) 02~ + S  2 020 - f i -  [4SS -~+2(S '2+SS")q~ 
072 0X 2 

-2*IS'S o,I 3X 

for q~(X, 7/). This is treated iteratively by use of line-by-line over-relaxation, as opposed 
to the option of complex-variable theory. A first guess ~(~/2 _ ~/)/2 [corresponding to the 
thin-eddy limit] or latest estimate for q~ is taken. Then (4.9) is replaced by its discrete 
form 

[8/2(~)i+1,j + ~)i-- 1 , j ) / / (A/ )  2 + "rest"+ ~] 

~Oi,j--1 + ¢~i,j + ~Oi,j+l ~" 2[S?//(AX) 2 + ,,eff,,/(A~/)2] 
(4.10a) 

where 

"eft"  = 1 + ~2S'2, 

"rest" 2 ' " = SiS (+i+l,j-~)i_l, j)/ /AX+ 2(S '2 + S,S )¢Pi.j 

-'qgigt(•i+l,j+l - t~/-1,j+l - t~i+l,j-1 + q~i-l,j-1)/(2 AXA~/) 

-TI(SiS" + 2S'2~[ ' t~i.j+l - q~i.j-,)/( 2 A*/), 

(4.10b) 

(4.10c) 
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- "e f f " / (A~)2  (4.10d) 
f l= 2[ S f / (  AX)2 + "eff"/(AT1)2] ' 

St --+ Si+ 1 - Si- 1 St ' ~ Si_, - 2Si + Si_, (4 .100 
2 AX ' (AX)  2 ' 

~1 ~ ( j -  1) A,/, (4.10f) 

for 2 < i < K - 1 and 2 < j  ~< J - 1. Here A,/= 1 / ( J  - 1) is the ~/-step. Equation (4.10a) is 
solved for the ¢ij's on the left-hand-side at a particular i value, involving inversion of a 
tridiagonal matrix, with the right-hand side and the coefficients fl assumed known at their 
latest values. The boundary conditions here are 6 = 0 at ~/= 0, l[q~i,] = q~i,: = 0], and 
q~ = ~(~2 _ 7/)/2 at X =  _ 1. Over-relaxation is applied in the updating of all the ~ , :  at 
the station i. The station is then swept repeatedly through the flow domain until a 
convergence criterion on the successive iterates is met. 

At that stage, the internally produced pressure p =PlI  on the eddy boundary at 
Y = S (X)  - follows as ]2 

PI I (X)  = C I I -  1(1 + S t 2 ) S 2  ( X ,  1) , (4.11) 

again from Bernouilli's law, at each X station. 

Step (1)) 

The updated S ( X )  distribution, S ~n) say, is obtained in Carter fashion from the old 
S ("-1) distribution by setting 

S (~) = STY-')+ r ( p , - P I I )  (4.12) 

at each X. This of course is equivalent to an explicit time-marching treatment of the 
artificial-time equation 3S/3 t  = (p  i - P li), with the pressure-match condition p i = P n in 
(3.2) to be hoped for as the large-time/iterative-convergence limit. The positive sign 
taken for the time marching here is chosen to avoid any fast-scale instabilities, as dictated 
by a linear-stability analysis. At the end points X = + 1 the constraints $1 = SK = 0 are 
enforced, in line with (3.3). 

Step (E) 

This step involving renormalization is an important part of the procedure. The approach 
is to determine the local behavior of the solution near the end points X = + 1, in terms of 
the unknown vorticity ~, and then impose the tangential-departure conditions (3.3) to 
update ~. In both the symmetric and the possible nonsymmetric solutions these condi- 
tions amount to a single equation governing ~. 

The function / ( z ) =  [(z + 1 ) / ( z -  1)]l/2(U - 1 -  i~) in the outer potential flow is 
analytic in z and tends to zero at infinity. Moreover, along the axis Y = 0, 

1 

I m a g ( / ( z ) ) = 0  [ f o r l X l > l  ], ~ g ( X )  [ f o r l X l < l ] ,  (4.13a) 

1 

R e a l ( , / ( z ) ) =  ~ h ( X )  [for IXl  <1 ] ,  (4.13b) 
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because of lateral symmetry in Y for I X I < 1. Hence Cauchy principal values give the 
relation 

1 ! 
h ( X ) = _ l f l - X ] ~ [  1 g(~) / l + ~ t ' d ~  

,~ t l+Xj  J_l(X-~) t l - ~ ]  (4.14) 

for I X I < 1. Requiring zero upwash h 
tangency condition (3.3), therefore yields 

at X = - 1 ( + ) ,  which is equivalent to the 

1 g(~) d~ = O. (4.15) 
f ] 1 ( 1 - ~ 2 ) ~  

The same relation (4.15) results from the tangency condition at X = 1 ( - )  when z + 1 are 
interchanged in the above reasoning. In (4.15) we now set 

g = - P l  - R2 + R4 (4.16a) 

where R4(X) is defined from (4.6) by 

R 4 -- g + R 2 + ½ - ½(1 + S'2)(1 + R 2 + g)2. (4.16b) 

Then in (4.16a) we may replace Pl by PII, in anticipation of the converged solution, and 
so (4.15) becomes, after manipulation, 

$2(~) d~.~ __ qTCi I + ~11 [R2(~)-R4(~)+R5(~) ] d~ 1_1 ~2  f 1 (4.17) 8 
"--1 (1 - ~2)~ J - 1  (1 --  ~2)~- 

where 

R5 ~ P I I  --  CII + 1 ~ 2 S 2 -  (4.18) 

The requirement (4.17) is imposed to update ~ ( <  0), with S(X) and all terms on the 
right-hand side taking their latest known values. This device is designed about the 
thin-eddy approach noted earlier, like other parts of the entire scheme, and it proved 
convergent within the overall scheme. 

The discretizations representing the integrals in (4.17) were of, the trapezoidal kind as 
in step (B). 

Step (F) 

This step is just as stated in Section 3. Typically 3000 sweeps of the steps (B)-(F) were 
required for convergence of symmetric solutions to within a tolerance 10 -5 in the 
vorticity ~, with the relaxation factor r in (4.12) typically being 0.001. For the nonsym- 
metric forms, by contrast, the approach to a converged state was much slower, as it was 
also for increased CH, and the tolerance had to be raised. For this reason, and because we 
feel that the nonsymmetric starting solutions could in fact be converging very slowly to a 
symmetric form instead (see footnote below), we refer to the nonsymmetric forms as 



288 

nearly converged and must regard them as conjectures still. A further point is that 
sometimes during the sweeps we took the modulus of the right-hand side in (4.12), or 
changed the sign of r, whenever S Cn-~) became negative, temporarily, again to prevent 
short-scale growth locally. 

The same scheme (A)-(F) applies also to the thin-eddy limit problem (3.6a, b), although 
that is simpler because the "remainder" terms R,(n = 1 to 5) in (4.3), (4.5), (4.16b), (4.18) 
are all zero then and so steps (B), (C) above reduce to the explicit formulae (3.5), (3.4) in 
turn. We also developed, however, an alternative scheme of the Davis [3]-Veldman [12] 
type for the thin-limit problem. In this alternative scheme (3.6a) is tackled directly, at 
each X = X,, in the diagonally dominant form 

K-1 

j=2 ( i - j ) 2 -  ¼ 
jq=i 

(4.19) 

where, in effect, C n = 1 here. Equation (4.19) is regarded as a quadratic equation for Si, 
the other Sj for j 4= i being assumed known. The station i is then swept repeatedly 
through the interval 2 ~< i ~< K - 1. At the end of each sweep the unknown vorticity ~ is 
updated as in step (E) above (with, again, R ,  = 0), to ensure the conditions (3.6b); also, 
for symmetric solutions we impose S(X) = S ( - X )  then, for 0 ~< X~< 1; this is bypassed 
in the possible nonsymmetnc cases, of course. The alternative scheme proved faster than 
the original one, but attempts to extend the alternative scheme to the full massive-eddy 
problem have proved only partly successful so far, producing converged results only for 
Cn ~< 0.3. Moreover, the massive- and thin-eddy results from both schemes agreed with 
each other to high accuracy, anyway, for the symmetric solutions up to CI~ = 0.3; not 
surprisingly, the sets of possible nonsymmetric solutions generated by the two schemes, in 
the thin-eddy case, appeared to be different from each other. 

The symmetric solutions from scheme (A)-(F) for the massive-eddy problem are 
presented in Figure 2. Nearly converged nonsymmetric solutions *, obtained for the 
thin-eddy problem either from (A)-(F) or from the alternative scheme just mentioned, 
and obtained for the massive-eddy problem from scheme (A)-(F) alone, are shown in 
Figure 3. A further check on accuracy in the calculations is given in Figure 4, for the 
symmetric thin-eddy case. In that case the coefficient s o in the local behaviour S - s0(1 + 
s)S/2of S(X) as IX I --, 1 - can be expressed in the convergent integral from 

23J2[ ] 
So-  3~r f_l p(~)  1 d~ 1 

1 (1 - 4) ½ 2 : ( 1  + 4)  3/2 ' 
(4.20) 

from (3.6) or its inverse as in this section. The behaviour implied by (4.20), which is 
dependent on the global solution, is compared locally in Figure 4 with the direct 

* More recent computations, however, performed for more (up to 10000) sweeps of the scheme (A)-(F), and 
for a range of values of Cn, show the solutions with nonsymmetric starting forms tending very closely indeed 
to the symmetric results eventually, near convergence; the nonsymmetric and the symmetric forms in fact are 
indistinguishable then to about four significant figures. This adds weight to the view, expressed earlier in this 
section, that there may well be only symmetric solutions, at least for most values of C n. 
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Figure 4. Comparison between the local numerical solution (×) and the analytical form s0(1 + X * ) 3 / 2  ( _  _ 

--,  with So given in (4.20)), for the eddy shape near the end X* = - 1 in the thin-eddy symmetric case. In this 
calculation we took K = 51 and (4.20) then gave the value s o = 1.0611 from a trapezoidal integration. 

numerical solution obtained previously (with K = 51). The agreement is found to be very 
close as X -o - 1. 

5. Further discussion 

The following points are mainly in addition to those of the preceding sections. 

(i) Another view of the physical mechanisms associated with massive-scale eddies comes 
f rom examining smaller-scale separations, and this can be more directly useful in practical 
terms, for many separated airfoil flows for example. Smaller-scale separations can be 
described completely, within an interactive framework of the triple-deck kind or similar, 
and so they provide a platform for moving outwards, as it were, towards the massive-scale 
separated cases of interest. 

This means adopting an interacting boundary-layer or similar approach at finite Re or 
going back to triple-deck sizes of flow configurations, as the principal examples for 
Re >> 1. These latter sized flows are governed by the boundary-layer equations 

~U OV ~U vOU d P  ~ U  (5.1) 
0 ~ + ~ - - ~ = 0 ,  U - ~ +  OY d X  + 0~ 2 

in the lower deck closest to the surface, subject to the boundary conditions 

U = V = 0 at Y--- 0 (or other surface conditions) (5.2) 

U -  Y + A ( X )  + f ( X )  as ~ - o  oo (5.3) 
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and to the pressure-displacement interaction law, for subsonic motion, 

p ( .~)  = 1. / °°  dA d~ 
~r J-o~ d,~ ( .X-~)"  

(5.4) 

In (5.3) f (  X) denotes the scaled surface shape, be it a hump, a step, a corner or the 
trailing-edge shape. 

Nonlinear solutions (see references in Messiter [5], Smith [9]) for separating flows can 
be derived numerically for increasing disturbance size, a say. Here a = 0 ( I f  l) is the 
typical height of the hump or step, or the angle of incidence in trailing-edge flow, or the 
ramp angle in the central example of supersonic ramp flow, for instance. In supersonic 
flow (5.4) is replaced by Ackeret's law, 

p ( ~ )  = _ dA (5.5) 
dX" 

The numerical solutions are useful for finite values of a anyway, for example in 
investigating trailing-edge stall, and as a increases they should move towards the massive 
separation cases, creating much larger scale eddies. The calculations become more 
difficult and prone to divergence as a increases, however, and windward differencing and 
multisweeping, in the forward and possibly the reversed sense also, seem essential in 
finite-difference methods. Much further investigation is required numerically into these 
increased-scale separating motions. 

Some reasonable theoretical conjectures may be made about the large-a behaviour of 
the separating motions. Once such is the extended Kirchhoff form (see the reviews above) 
but that appears to hit an inconsistency at eddy closure much like the one described in 
Section 2. The other main contender is a massive-eddy account, like that in Section 3. 
This is especially encouraging since the system of triple-deck equations (5.1)-(5.4) admits 
the Benjamin-Ono equation (3.6a) again, for the eddy shape S in subsonic flow, under the 
assumption of a predominately inviscid eddy or eddies much greater than the typical 
obstacle size a. So the previous inviscid, thin-eddy, solutions of Sections 3 and 4 and 
Figure 2 can apply. They can also be extended to incorporate the surface-shape effect 
f ( X )  if the eddy size is reduced to O(a), in which case we have a more Prandtl-Batchelor 
type of flow. The viscous parts of the large-a 'solution still need to be investigated 
carefully, to pin the solution down, and the join to the massive-separation cases studied 
previously still has to be followed through, but overall the large-a structure seems to be 
not inconsistent at this stage. 

By contrast, the supersonic or hypersonic-limit regimes do not work in the same way, 
even at the inviscid level (Smith [9]). For, in supersonic flow for instance, with (5.5) 
holding, we obtain for the massive-eddy balance the steady Burgers equation 

dS (5.6) ~-£2S2('~) - C n -  dX 

in place of (3.6a). The equation (5.6) admits no closed-eddy solutions and neither does its 
hypersonic-limit counterpart where dS/dX is replaced by S(X). On the other hand, 
analysis by Burggraf and Smith [2] shows that if the effect of the surface shape is included 
then the inviscid eddy can be closed. So the implication is that for these regimes the eddy 
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size is probably much less than in the subsonic regime. Moreover, the structure takes on 
the Prandtl-Batchelor form in essence. There is a difficulty, even so, because the start of 
the eddy ahead of a supersonic ramp requires a large pressure rise, on inviscid reasoning, 
and this contradicts the O(1) pressure rise (P = 1.8) known to occur in the viscous 
free-interaction separation upstream. Therefore, in this flow, either the proposed inviscid 
structure should be modified (it clearly needs to incorporate the secondary separations 
which can be expected in any case), or the free-interaction separation is nonunique and 
can lead (e.g.) to an arbitrarily large pressure rise. The latter prospect is an intriguing one 
and has still to be addressed. Again, the alternative of large-a separating flow produced 
by a backward-facing step or a ramp of finite length shows more immediate hope of 
fitting together with the above account, since a very large pressure variation can be built 
up, before the start of the step or ramp, by means of the alternative attaching-flow 
free-interaction. 

(ii) Despite the comments in Sections 2 and 3 free-streamline theory of the extended 
Kirchhoff kind still "works" in the numerical and practical sense (see Messiter [5], Smith 
[9]) at the medium Reynolds numbers where external flow remains laminar; moreover it 
appears to be self-consistent in internal motions through pipes and channels and in 
cascade flows. 

(iii) With regard to the main inviscid massive-eddy problem, the present study addresses 
(Sections 3 and 4) the 'possibility that, in addition to the symmetric solutions throughout, 
nonsymmetric solutions may exist which are skewed in the _+ x direction, thus introducing 
an extra degree or degrees of freedom; see also an earlier footnote. The computations in 
nonsymmetric cases were only very slowly convergent, however, and so a firm statement 
on their existence or not is difficult to support (as yet). Note also that although the linear 
integral equation obtained by linearization about the symmetric solutions of (3.6a, b) 
(e.g.) is of a kind considered briefly in Mushkilishvili's book the coefficients involved tend 
to limit the amount of analytical progress. One might also conjecture that further 
nonsymmetry is possible with respect to the lateral direction y, expect for (say) eddies 
adjoining solid surfaces as in the thin-eddy triple-deck cases in (i) above. To some extent 
the conjectured nonsymmetry may be a side issue but the implications of this possible 
extra freedom existing at the inviscid level are currently being considered especially for 
their impact on the important viscous-periodicity condition and on the body-scale flow 
(the second and third tasks mentioned in Section 3). 

(iv) For axisymmetric separating flow past a blunt axisymmetric body the analogue of 
Sections 2-4 can also be constructed. This is being considered by Mr. R. Avis in Ph.D. 
research at University College. In particular the slender-eddy limit, analogous to the 
thin-eddy limit in Section 3, yields a surface pressure 

Pl oc ($2) '' (5.7) 

from axisymmetric linearized-flow properties, with unknown eddy radius S(X), while the 
vorticity argument inside the slender eddy now gives 

P l l  = CI1 -- a 2 S 4 ,  ( 5 .8 )  

where a is a constant. Equating the two pressures then produces an integrable nonlinear 
differential equation for the area function 0c S 2. Solutions with closed eddies are again 
found to exist. 
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(v) The stability properties of both the small- and the large-scale separated flows are of 
much theoretical and practical concern. Further, there is a clear need to develop the 
theory to encompass nonlinear unsteady flows, and three-dimensionality, with a view to 
making a connection with the Karman vortex trail observed in practice at higher Re, 
among other things. Some aspects of this are discussed by Smith [10]. 

(vi) There is also much still to be done for the inclusion of turbulent-modelled boundary 
layers as opposed to laminar ones. This inclusion is significant because otherwise it is 
tempting to appeal to turbulence effects to justify the use of rather arbitrary inviscid outer 
solutions. 

(vii) In all the flows discussed, although there is still quite a long way to go to complete 
the theory, it seems that viscous forces play a most important role. Inviscid solutions can 
be obtained fairly readily in principle, and there is often an infinity of them available; but 
viscous effects narrow the choice considerably. This applies throughout small- or large- 
scale separated flow theory, whether the flow is governed by the Navier-Stokes or the 
interactive boundary-layer equations. We would presume that this important role of 
viscosity applies also to the nonsymmetric extra inviscid solutions (see also the earlier 
footnote) considered in the present study, if they exist. 
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